46,288 research outputs found

    [Colored solutions of Yang-Baxter equation from representations of U_{q}gl(2)]

    Full text link
    We study the Hopf algebra structure and the highest weight representation of a multiparameter version of Uqgl(2)U_{q}gl(2). The commutation relations as well as other Hopf algebra maps are explicitly given. We show that the multiparameter universal R{\cal R} matrix can be constructed directly as a quantum double intertwiner, without using Reshetikhin's transformation. An interesting feature automatically appears in the representation theory: it can be divided into two types, one for generic qq, the other for qq being a root of unity. When applying the representation theory to the multiparameter universal R{\cal R} matrix, the so called standard and nonstandard colored solutions R(μ,ν;μ,ν)R(\mu,\nu; {\mu}', {\nu}') of the Yang-Baxter equation is obtained.Comment: [14]pages, latex, no figure

    Variational formulas of higher order mean curvatures

    Full text link
    In this paper, we establish the first variational formula and its Euler-Lagrange equation for the total 2p2p-th mean curvature functional M2p\mathcal {M}_{2p} of a submanifold MnM^n in a general Riemannian manifold Nn+mN^{n+m} for p=0,1,...,[n2]p=0,1,...,[\frac{n}{2}]. As an example, we prove that closed complex submanifolds in complex projective spaces are critical points of the functional M2p\mathcal {M}_{2p}, called relatively 2p2p-minimal submanifolds, for all pp. At last, we discuss the relations between relatively 2p2p-minimal submanifolds and austere submanifolds in real space forms, as well as a special variational problem.Comment: 13 pages, to appear in SCIENCE CHINA Mathematics 201

    A rescaled method for RBF approximation

    Full text link
    In the recent paper [8], a new method to compute stable kernel-based interpolants has been presented. This \textit{rescaled interpolation} method combines the standard kernel interpolation with a properly defined rescaling operation, which smooths the oscillations of the interpolant. Although promising, this procedure lacks a systematic theoretical investigation. Through our analysis, this novel method can be understood as standard kernel interpolation by means of a properly rescaled kernel. This point of view allow us to consider its error and stability properties

    A rescaled method for RBF approximation

    Get PDF
    A new method to compute stable kernel-based interpolants has been presented by the second and third authors. This rescaled interpolation method combines the standard kernel interpolation with a properly defined rescaling operation, which smooths the oscillations of the interpolant. Although promising, this procedure lacks a systematic theoretical investigation. Through our analysis, this novel method can be understood as standard kernel interpolation by means of a properly rescaled kernel. This point of view allow us to consider its error and stability properties. First, we prove that the method is an instance of the Shepard\u2019s method, when certain weight functions are used. In particular, the method can reproduce constant functions. Second, it is possible to define a modified set of cardinal functions strictly related to the ones of the not-rescaled kernel. Through these functions, we define a Lebesgue function for the rescaled interpolation process, and study its maximum - the Lebesgue constant - in different settings. Also, a preliminary theoretical result on the estimation of the interpolation error is presented. As an application, we couple our method with a partition of unity algorithm. This setting seems to be the most promising, and we illustrate its behavior with some experiments

    Y(so(5)) symmtry of the nonlinear Schro¨\ddot{o}dinger model with four-cmponents

    Full text link
    The quantum nonlinear Schro¨\ddot{o}dinger(NLS) model with four-component fermions exhibits a Y(so(5))Y(so(5)) symmetry when considered on an infintite interval. The constructed generators of Yangian are proved to satisfy the Drinfel'd formula and furthermore, the RTTRTT relation with the general form of rational R-matrix given by Yang-Baxterization associated with so(5)so(5) algebraic structure.Comment: 10 pages, no figure

    A double bounded key identity for Goellnitz's (big) partition theorem

    Full text link
    Given integers i,j,k,L,M, we establish a new double bounded q-series identity from which the three parameter (i,j,k) key identity of Alladi-Andrews-Gordon for Goellnitz's (big) theorem follows if L, M tend to infinity. When L = M, the identity yields a strong refinement of Goellnitz's theorem with a bound on the parts given by L. This is the first time a bounded version of Goellnitz's (big) theorem has been proved. This leads to new bounded versions of Jacobi's triple product identity for theta functions and other fundamental identities.Comment: 17 pages, to appear in Proceedings of Gainesville 1999 Conference on Symbolic Computation

    Local U(1) symmetry in Y(so(5)) associated with Massless Thirring Model and its Bethe Ansatz

    Full text link
    The Massless Thirring model associated with SO(5) is solved in terms of the local U(1) symmetry. The local U(1) symmetry is related to q-deformation of four-component field operators due to the nonlinear interaction for differently internal degree of freedom. The Bethe ansatz wavefunction is also discussed. In addition, the local U(1) symmetry in the Yangian associated with SO(5)(Y(SO(5))) is explored.Comment: 10 pages, no figure
    corecore